3.984 \(\int \frac {x^2}{\sqrt {3-b x^4}} \, dx\)

Optimal. Leaf size=54 \[ \frac {\sqrt [4]{3} E\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{3}}\right )\right |-1\right )}{b^{3/4}}-\frac {\sqrt [4]{3} F\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{3}}\right )\right |-1\right )}{b^{3/4}} \]

[Out]

3^(1/4)*EllipticE(1/3*b^(1/4)*x*3^(3/4),I)/b^(3/4)-3^(1/4)*EllipticF(1/3*b^(1/4)*x*3^(3/4),I)/b^(3/4)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 54, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {307, 221, 1199, 424} \[ \frac {\sqrt [4]{3} E\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{3}}\right )\right |-1\right )}{b^{3/4}}-\frac {\sqrt [4]{3} F\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{3}}\right )\right |-1\right )}{b^{3/4}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/Sqrt[3 - b*x^4],x]

[Out]

(3^(1/4)*EllipticE[ArcSin[(b^(1/4)*x)/3^(1/4)], -1])/b^(3/4) - (3^(1/4)*EllipticF[ArcSin[(b^(1/4)*x)/3^(1/4)],
 -1])/b^(3/4)

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[(Rt[-b, 4]*x)/Rt[a, 4]], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 307

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-(b/a), 2]}, -Dist[q^(-1), Int[1/Sqrt[a + b*x^
4], x], x] + Dist[1/q, Int[(1 + q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && NegQ[b/a]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 1199

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Dist[d/Sqrt[a], Int[Sqrt[1 + (e*x^2)/d]/Sqrt
[1 - (e*x^2)/d], x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && EqQ[c*d^2 + a*e^2, 0] && GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {x^2}{\sqrt {3-b x^4}} \, dx &=-\frac {\sqrt {3} \int \frac {1}{\sqrt {3-b x^4}} \, dx}{\sqrt {b}}+\frac {\sqrt {3} \int \frac {1+\frac {\sqrt {b} x^2}{\sqrt {3}}}{\sqrt {3-b x^4}} \, dx}{\sqrt {b}}\\ &=-\frac {\sqrt [4]{3} F\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{3}}\right )\right |-1\right )}{b^{3/4}}+\frac {\int \frac {\sqrt {1+\frac {\sqrt {b} x^2}{\sqrt {3}}}}{\sqrt {1-\frac {\sqrt {b} x^2}{\sqrt {3}}}} \, dx}{\sqrt {b}}\\ &=\frac {\sqrt [4]{3} E\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{3}}\right )\right |-1\right )}{b^{3/4}}-\frac {\sqrt [4]{3} F\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{3}}\right )\right |-1\right )}{b^{3/4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 30, normalized size = 0.56 \[ \frac {x^3 \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};\frac {b x^4}{3}\right )}{3 \sqrt {3}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/Sqrt[3 - b*x^4],x]

[Out]

(x^3*Hypergeometric2F1[1/2, 3/4, 7/4, (b*x^4)/3])/(3*Sqrt[3])

________________________________________________________________________________________

fricas [F]  time = 0.97, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {-b x^{4} + 3} x^{2}}{b x^{4} - 3}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-b*x^4+3)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-b*x^4 + 3)*x^2/(b*x^4 - 3), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2}}{\sqrt {-b x^{4} + 3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-b*x^4+3)^(1/2),x, algorithm="giac")

[Out]

integrate(x^2/sqrt(-b*x^4 + 3), x)

________________________________________________________________________________________

maple [B]  time = 0.01, size = 94, normalized size = 1.74 \[ -\frac {\sqrt {-3 \sqrt {3}\, \sqrt {b}\, x^{2}+9}\, \sqrt {3 \sqrt {3}\, \sqrt {b}\, x^{2}+9}\, \left (-\EllipticE \left (\frac {\sqrt {3}\, \sqrt {\sqrt {3}\, \sqrt {b}}\, x}{3}, i\right )+\EllipticF \left (\frac {\sqrt {3}\, \sqrt {\sqrt {3}\, \sqrt {b}}\, x}{3}, i\right )\right )}{3 \sqrt {\sqrt {3}\, \sqrt {b}}\, \sqrt {-b \,x^{4}+3}\, \sqrt {b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(-b*x^4+3)^(1/2),x)

[Out]

-1/3/(3^(1/2)*b^(1/2))^(1/2)*(9-3*3^(1/2)*b^(1/2)*x^2)^(1/2)*(9+3*3^(1/2)*b^(1/2)*x^2)^(1/2)/(-b*x^4+3)^(1/2)/
b^(1/2)*(EllipticF(1/3*x*3^(1/2)*(3^(1/2)*b^(1/2))^(1/2),I)-EllipticE(1/3*x*3^(1/2)*(3^(1/2)*b^(1/2))^(1/2),I)
)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2}}{\sqrt {-b x^{4} + 3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-b*x^4+3)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^2/sqrt(-b*x^4 + 3), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {x^2}{\sqrt {3-b\,x^4}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(3 - b*x^4)^(1/2),x)

[Out]

int(x^2/(3 - b*x^4)^(1/2), x)

________________________________________________________________________________________

sympy [A]  time = 1.39, size = 39, normalized size = 0.72 \[ \frac {\sqrt {3} x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {b x^{4} e^{2 i \pi }}{3}} \right )}}{12 \Gamma \left (\frac {7}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(-b*x**4+3)**(1/2),x)

[Out]

sqrt(3)*x**3*gamma(3/4)*hyper((1/2, 3/4), (7/4,), b*x**4*exp_polar(2*I*pi)/3)/(12*gamma(7/4))

________________________________________________________________________________________